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We analyzethe vacuumstructure(degeneracy,nodesand symmetries)of somequantum
theorieswith specialemphasison the study of its dependenceon the geometryand topology
of the classical configuration space.The study of the topological limit shows that many
low energy properties of those quantum theories can be inferred from the structureof
their topological phases.After reviewing somesimple pure quantum mechanical models
(planar rotor, magnetic monopoleandquantum Hall effect) we focus on the study of the
rich relationshipexistingbetweentopologically massivegaugetheoriesandtheir topological
phases,Chern—Simonstheories. In particular we show that, although in a finite volume
the degeneracyof the quantumvacuum of gaugetheoriesdependson the topologyof the
underlying Riemann surface, in an infinite volume the vacuum is unique. Finally, the
topological structureof Chern—Simonstheory is analyzedin a covariantformalism within
a geometricregularizationscheme.We discussin somedetail the structureof the different
metric dependentcontributionsto the Chern—Simonspartition function and the associated
topological invariants.
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1. Introduction

The relevant field configurationsin the (euclidean)functional integralof a

quantumfield theory are rather singular. In general,they aredistributions for
space—timewith dimensionD > 2 [11. However,the low energypropertiesare
usually encodedby someclassicalsmooth field configurations.For sucha rea-

sontopological effectsusuallyarisein the low energyregime. For instance,the
structureof the quantumvacuumandthe existenceof spontaneoussymmetry
breakingdependverymuchon thegeometryofthespaceofstaticclassicalconfig-
urationswith minimal effectiveenergy.Semiclassicalsolutionsof the euclidean
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equationsof motion also play a certainrole in the analysisof the quantumtun-

nelingbetweenclassicalvacuaandtheexistenceof a massgap.From a functional
integralviewpoint the role of thosesmoothconfigurationscan be understoodin

termsof the dominanceof theweightof neighboringsingularconfigurationswith
relativemomentumbiggerthanan effective low momentumscale [21.

In general,the lagrangiansof local field theorieshave two kinds of terms:
ultralocal (without field derivatives) potential terms and generalizedkinetic
terms,which are responsiblefor the interactionand its propagation,respec-
tively. Propagatingterms areusuallyquadraticin fields andspace—timederiva-
tives. For thosegenericsystemsthe classicalpropertieswhich are relevant for
the quantumtheory are encodedby the minima of the potential term (static
solutions,kinks, solitons, monopoles,etc.) or dynamic solutions which min-
imize the energy functional (instantons).Minima of the potential constitute

the basic building blocks of the quantumvacuum, and instantonswith non-
trivial tunnelingcontributionare very relevantfor the determinationof its final
structure.

A new type of physical phenomenaariseswhen there is no ultralocal po-
tential term and thereare interactionslinear in space—timederivatives [3—5].
In such a casethe low energy regime has a richer structureand new topo-
logical effects arise. The dominant terms of the effective action at low en-
ergy are linear in space—timederivativesand therefore, if we neglect the ir-
relevant terms, the effective theory becomessingularfrom the canonicalfor-
malism viewpoint. The analysisof the constraintsof the effective theory leads

to a reducedphasespace (moduli space)which can be quantizedby means
of geometric/holomorphicmethods.The differencewith the standardcase(ul-
tralocal potential + quadraticpropagatingterm) is that in the later the low
energyphysicscanbe inferred from a semiclassicalanalysisof the effective ac-
tion, which doesnot require anexact quantization,whereasin the former case,
insteadof averagingover collectivecoordinatesit is necessaryto quantizethe
reducedtheory over its moduli space,although in many casesthe semiclassi-
cal quantization is also exact. The infrared limit defines a new phaseof the
theory, the topologicalphase,which has a very peculiar (universal) behavior.
Genericallyspeaking,in this phasethereare no local degreesof freedomand
the only observablesare topological invariants [61 (see ref. [7] for a review).
Witten conjecturedthe consistencyof quantumgravity in a topological phase
[81. The notion of topologicalphaseis very differentfrom the geometricphase,
which generalizesthe Aharonov—Bohmand Berry’s phases[9] and shouldnot
be confusedwith it.

For such systemsthereis a dual relationshipbetweenthe quantumfield the-

ory and its low energyeffectivetheorywhich is very peculiarand merits some
attention.Usually, the topological theorywhich emergesfrom the infraredlimit
(topological phase) is simpler and in many casesit is exactly solvable.There-
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fore it would be very interestingto learnhow to extractinformationaboutthe
quantumtheory from its topologicalphase.On the otherhand,sincetopologi-
cal theoriesare usuallysingular,fully fledgedquantumtheoriescan be usedas
ultraviolet regularizationsof their topological limits. From this point of view it
is also interestingto analyzethe possibledependence(if any) of the topologi-
cal observablesdefinedin the topological theoryon the methodof ultraviolet
regularization.

Although the low energyregime is dominatedby smoothconfigurationsthe
topologicaltheorydefinedby the relevanttermsof the effectiveactionis more
singular (e.g., dominantconfigurationsin the functional integralare moresin-
gular distributions).After eliminationof all spuriousdegreesof freedomand
factorizationof adivergentfactorthe functionalintegral becomesmoreregular,
e.g., the Haussdorffdimensionof the quantumfields is renormalizedto zero.
However, if the quantizationis carriedout before the elimination of the spu-
rious degreesof freedomthe correspondingquantumtheory might exhibit an
anomalousbehaviorinducedby the quantumeffectsof non-topologicaldegrees
of freedom.In the caseof Chern—Simonstheory it hasbeenshown that such
an anomalydoesnot appearin the canonicalformalism [10,111,but it is still
unclearwhetherit arisesor not in the covariantformalismby the fluctuationof
non-physicaldegreesof freedom.

In this paperwe analyzethe low energy regimeof somequantumsystems
with non-trivial topologicalphasesin order to clarify the connectionbetween
topologicaltheoriesandordinaryquantumtheoriesdefinedon arbitrarymani-
folds. Specialemphasisis put on the studyof the dependenceon thebackground
metric of the manifold.The main purposewould be to understandthe relation-
ship betweentopologically massiveYang—Mills theoriesin 2 + 1 dimensions
and Chern—Simonstheory definedon arbitrary threedimensionalmanifolds.
We shall focus on the analysisof the partition functionbecauseit is the most
sensitiveobservableunderchangesof space—timemetrics.

The organizationof the paperis as follows. In section 1 we analyzethe low
energylimit of somesimplequantumsystemswith interactionslinear in time
derivatives. In particular,we point out the existenceof a certaindependence
on the regularizationmethod.The sameanalysiscarriedout in section 3 for
Yang—Mills theorieswith Chern—Simonsinteractionsshowsthe uniquenessof
the quantumvacuumin the infinite volume limit. Finally we discussin section
4 the backgroundmetric dependenceof thepartitionfunctionofChern—Simons
theory in the covariantformalismusingageometricregularizationof ultraviolet
divergenceswhich is related to topologically massiveYang—Mills theory.We
show that the topological characteris enhancedfor someparticular choiceof
the regulatorsandmetricsof space—timemanifolds.
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2. Topological phasesin quantum mechanics

BeforediscussingChern—Simonstheoryweanalyzesomesimplersimilarpure
quantummechanicalmodels.Thesesystemshavetheir own interestfor different
physicalapplications[12—15], althoughtheir role hereis simplyto illustrateand
clarify the main featuresof topologicalphasesof quantumtheories.

The models describethe interaction of a point-like chargedparticle con-
strainedto movein somesubmanifoldsof ~ with a magneticfield.

The classicallagrangianis

L=~m~2+eA•~, (2.1)

wherein andearethemassandchargeof theparticleandA is thevectorpotential
of the magneticfield B = V xA. The topological limit in —* ü correspondsto
the casewherethe lagrangian

L=eA.~ (2.2)

is linear in time derivatives[3—5].
The correspondingquantumsystemis definedby the following hamiltonian:

= ±(V — ieA)2, (2.3)

2rn

which in the topologicallimit in —~ 0 becomessingularexcept in the subspace

of null eigenvalues.Genericallyspeaking,thereareno null eigenvaluesandthe
topologicallimit only makessenseaftera (divergent)renormalizationofI-fl which
cancelsthe groundstateenergy.Thespaceof quantumstatesis thenreducedto
the subspaceof ground statesof I-fl (reductionofHi/bert space).

Whenthe particleis constrainedto movein a submanifoldof R3we obtaina
family of systemswith differenttopologicallimits whichdependon thegeometry
of the submanifoldM andthe form of the magneticfields. In the generalcase
the classicalsystemis describedon the phasespaceT*M with the symplectic
structurew

0 + in definedby the sumof thecanonicalform in0 andthe two-form
in ofM associatedto themagneticfield. Quantizationisonly possibleif (2m ) ‘w
is an integerform, i.e., (2ic)’ [in] E H

2(M,L). In that casethe quantumstates
are definedby sectionsof a line bundleE(M,C) with a connectionA whose
curvature in

4 = dA = ir~wis the pull-backof in by the projectionmap it

E —~ M of the bundleE(M,C). If M is an orientedriemannianmanifold the
quantumhamiltonianis of the form

I-fl = ———LIA, (2.4)
2m

wherez14 = d~d4,d~= (—1) * dA* is the adjoint of the covariantdifferential
dA and* is the Hodgeoperatorassociatedto the riemannianstructureg of M.
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2.1. PLANAR ROTOR

The first model describes the interaction of a charged particle moving on a
circle S’ = {x e I~2HxH= l} with a magneticfield vanishingon S’ but with
non-trivial magneticflux acrossS’ [12]. The correspondingvector potential

canbe expressedin cylindric coordinatesby A
6 = ~/2ir, Ar 0,A~= 0, and

satisfiesthe two conditions:B = V >< A = 0 for r ~ 0 and

fAdY = fBda = ~ � 0.

The quantumdynamicsis given by the hamilton.ian

H = _-_!-- (~— (2.5)
2m\

with periodic boundary conditions iu(0) = çu(2ir). The spectrumof H is

E~= ~_L~(n_e)2, (2.6)

2m

where e = eç5/2m.
The ground state is unique fore ~ (n + i.). However,fore = (n + ~-) the

systemexhibitsavery peculiarbehavior[12], which is reflectedby thefact that
the ground stateis doubly degenerate.Theexistenceof this degeneracycan be
explained by the presence of complexinteractionswhich preventthe application
of the mm—maxprinciple to provethe uniquenessofthegroundstate.Weremark
that the classicalS0(2) symmetry is preservedafter quantization.The ground
statesubspacespanstwo irreduciblerepresentationsof SO(2) fore = (n +

andonly onein the othercases.
Consequently,in the topological limit in —p 0 theinfinite dimensionalHilbert

spaceis reducedto a finite dimensionalone

~ JC, e~(n+~), (27)

— 1C
2, e = (n +

From a classical point of view the reducedphasespaceis a singlepoint in both
cases because in = 0. Therefore, quantization from this reduced phase space
leads to the same Hilbert space 7-1~ = C andhamiltonianH = 0 in both cases.
Thus, the peculiarbehavior of the case e = (n + ~) is not observedif the
constraintsareeliminatedbeforequantization.

The topological phase of the quantumsystemis independentof the metric of
the world (time) line because of the time reparametrizationinvariance,and is
also independent of the metric of the target spaceS1 used in the regularization.
In this case both classical propertiesare preservedunderquantizationunlike
for the systemsto be consideredbelow.The differencebetweenthe two types
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E N=1~n=O

Fig. I. Low energylevelsof the planarrotor hamiltonianfor 0 < ~< I. The thick curvesrepresent
thegroundstateenergiesand the cuspat e = 1/2 the transition point where the groundstateis

degenerate.

of topological quantumphasesgeneratedby the planar rotor is encodedby a
(metric independent)topological invariant

fAdY.

2.2. MAGNETIC MONOPOLE

We now consider the interaction of a charged particle constrained t’i move
on a two dimensional sphereS2 = {x e l~ ~xj~= a} with a Dirac magnetic
monopole

B = gx/~x~I3. (2.8)

Although thereis no global regularvector potentialA over the whole sphere~2

with B = V x A, therearevector potentialsof B,

C
A~= ~ xWIxU +x~)’

which are only singular at the north and south poles, respectively.
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The quantum hamiltonians

H = —-1-(V — ieA~)2 (2.9)

2 in

are not univocally defined as self-adjoint operators on a functionalHilbert space
unless the magnetic flux acrossthe sphereS2,

efBd~7= 4meg,

is quantized, k = 2eg ~ 1 (Dirac’s quantizationcondition [13]). This topo-
logical (metric independent)conditionimpliesthat A~definesaconnectionon
a line bundleE(S2,C)with first Cherncharacteristicnumberc

1 (E) = k [16].
Since the metric of S

2 induced from R~is SO(3) invariant thereis ahorizontal
lift of this symmetry to an action of its universalcoveringgroup SU(2) on

E(S2,C).Because of the non-trivial magnetic flux the generatorsof this action
pick up an additional term

= ej~x’V’
4— ~kxs/Hx~l, (2.10)

which is necessaryto preservetheSO(3) symmetryof the quantumhamiltonian
[H, Lr] = 0 andthe S0(3) Lie algebracommutationrelations

[Lr,Ls] = ErsiLt. (2.11)

Theinducedrepresentationof SU(2) on thespaceofsectionsof E (52 C) canbe
decomposedinto irreduciblerepresentations7-1~parametrized by the eigenvalues
of the secondCasimiroperatorL

2 =

+ 2/)(~k~+ 2/ + 2), / ~

whosedegeneracyis given by the Frobeniusreciprocity theorem,

diml4 = k~+ 2/ + 1. (2.12)

The spectrumof the hamiltoniancan be easily obtainedfrom symmetryargu-
mentsor by the following explicit calculation.

In the complex coordinates

= ae~’tan0/2, ±= ae~tan0/2,

the hamiltonian (2.9) reads

H = —~ [(1 + )2 ~ + ~_~-)(zO_±J)_ ~_~Zz] . (2.13)

The spectrumcanbeeasilyobtainedby meansof the following similarity trans-

formation
= (1 + z±/a2)~/2~(z,±), (2.14)
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which transformsthe hamiltonian(2.13) into

1 / \2 k / k
~ (2.15)

2rn ‘~ aj a~ aj 2a

The eigenfunctionsof H’ are

~l ~ — 1p(iIkHi) (a_— z± / = 0,1,2 (2 16)
— / ~a

2 + zz) ‘ j = —l,—/ + 1 / + k~,

whereP
1~’~(i,j > —I) are the Jacobipolynomials [17]. The corresponding

eigenvalues

E1 = 1 2 [Ik~1 + ~) + 1(1 + 1)] , / = 0,1,2

2 in a

havedegeneracies
21 + k~+ 1,

which are in agreementwith the Frobenius reciprocity theoremrequirements
(2.12). In particular,the groundstatesareexpandedby the analyticfunctions

~(z) = z’, / = 0

and have non-trivial degeneracy,k~+ 1, wheneverthe magneticmonopole
charge is non-null. Since the bundle E(5

2,C) is non-trivial for k ~ 0, every
stationarystatemusthavenodes,i.e.,vanishingpoints. In theholomorphic rep-
resentationthe origin z = 0 and infinity z = ~x. are nodes of the basis of
eigensections(2.16) of H.

In the topological limit in —÷ 0 the Hilbert spaceis reducedto the finite

dimensional space
74 = {~(z) =

of analyticsectionsof E(52,C) which areholomorphicwith respectto the com-
plex structureinducedby the connectionA, the magneticfield B andthe ne-
mannianmetric of 52~The Hilbert space74 spansan irreducible representation
of SU(2) with angularmomentumk~/2anddimensiondiml4 = k~+ 1. The
result of the topological limit is in agreementwith thatobtainedby holomorphic

quantization [18] from thereducedphasespace(S2. in = 2irik d±A dz). How-
ever,this result might dependon the choice of the metric of the configuration
(target) space.In this examplethe backgroundmetric of S2 is maximallysym-
metric (SO(3)-invariant),but for a genericmetric thedegeneracyof theground
stateis lower. This fact showsthat a good prescriptionfor usingthe topologi-
cal limit as a method of quantizationof a topological theory shouldbe based
on the mostsymmetricalmetric of the configurationspacein order to preserve
as much classicalsymmetriesas possible.Even in such a casesomequantum
anomaliesmight appearin thespaceofquantumstates,which requirea central
extensionof the classicalsymmetrygroup. In order to obtain a (target space)
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metric independentquantumtheorynot only a renormalizationof the vacuum
energyis required,but also a metric dependentoperatorialrenormalizationof
the hamiltonian, which is not usually consideredin standardrenormalization
scheme prescriptions.

2.3. HALL EFFECTON A TORUS

We now considerthe interaction of a chargedparticle moving on a torus
T2 with a constantmagneticfield, HBH = B = etc. In complex coordinates

= x
1 + ix2, = x1 — ix2 the quantumhamiltonian

H = —--~-- [4a~J+ eB(zO— ±~J)— ~e2B2z±] (2.17)

2,n
is uniquely definedas a self-adjoint operator iff the magneticflux acrossthe
torus

fBdt7 = B

is quantized, k = eB/2m E 1 (Dirac’s condition). This topological constraint
implies that the vector potential A1 = —B e11x’/2 definesa connectionon a
line bundleE(T

2,C) with first Chernnumberc
1(E) = k. The quantumstates

are the L
2-sectionsof E(T2,C). Continuous sections of E satisfy the boundary

conditions #1

w(z + 1, + 1) = eV2~(z, ±),
~u(z+ i, ±— i) = ei~~2W(z, ±), (2.18)

and becauseof the non-triviality of E (for k =0) must have nodesat some
points of T2 for non-vanishingmagneticflux. The classicaltranslation U(l)2
symmetryof the planarmetric of T2 becomesanomalouswhenlifted to the line
bundleE. The minimal lift of the correspondinggeneratorsdoesnot commute
with the quantum hamiltonian (2.17) and does not satisfy the translation Lie

algebra commutationrelations.A central extensionof the Lie algebra U (1)2
which formally commuteswith thequantumhamiltonian(2.17) can be obtained
by addinga new term to the infinitesimal generators

p = D + ~kit±, j~= ~J—~kirz, (2.19)

in a similar way to the S0(3) symmetry in the caseof a magneticmonopole
(2.10). The correspondingquantumLie algebrais a Heisenbergalgebra,

[p,j~] = —km. (2.20)

~ There is a phaseambiguity in the choice of boundary conditions due to the non-simply

connectedcharacterof the torus (Aharonov—Bohm phase).The prescription (2.18) (trivial
phases)correspondsto the standardnotation in the description of the quantum Hall effect
[15] and hasthe nice property of preservinggeneralcovariance.
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The generatorsof translationsymmetries(2.19) cannotbe truly considered
asquantumsymmetriesof the hamiltonianH’ because,althoughthey formally
commutewith H’, they do not preservetheboundaryconditions(2.18). In this
way translationinvarianceis anomalous~in the senseadvocatedby Manton and
Esteve.Theexistenceof this anomalyexplainswhy the energylevelsof I-fl’ canbe
finitely degeneratewhereasnon-trivial irreduciblerepresentationsof the Heisen-

bergalgebra(2.20) are infinite dimensional.In the caseof the infinite planethe
anomalydoesnot exist, which implies an infinite degeneracyof theenergylev-
els. The spectrumof the hamiltonian (2.17) can be obtainedby meansof a
similarity transformation

~(z,z) = e~2~(z,±), (2.21)

which yields

H’ = —~ [4(0 — km±)U—2km], (2.22)
2 in

with

~(z + 1,z + 1) = e z+kmI2~(
2z),

~(z + i,±— i) = e~
2~(z, z) (2.23)

asboundaryconditions.The eigenfunctionscanbe expressedas infinite sumsof
eigenfunctionsof a harmonicoscillatorwhich satisfy the boundaryconditions
(2.23). Their eigenvalues are given by Landau levels

= ~(n + 1/2), fl = 0,1,2 (2.24)

in j = —ii,—n + 1 k~—

with degeneracyn + k~.The ground statedegeneracyk( can be understood

by the failure of the mir.—maxprinciple in thepresenceof complexinteractions.
Thecorrespondingeigenfunctionsaretheholomorphicsectionsof E(T2, C) (i.e.

theta functions) with respectto the complex structureinducedby the vector
potentialA, and the complex structureof the torus T2,

~(z) = e~2/2& [J/~kI] (~kIz,i~k~)

= ek~22/2 ~ e_7k2+27nik~

/EZ + j/ k

j=0,1,2 k~—l.

In the topological limit the Hilbert spaceis reducedto thegroundstatesubspace

74 = {~(z);~ici&~~(z)}

if the vacuumenergy is renormalizedto zero.The resultsof this quantization
method coincideswith that obtainedvia holomorphic quantizationfrom the
reducedphasespace.
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In thepresentapproachtheresultis againindependentof theworld line metric
but it doesdependon the (targetspace)T2 metric. In fact, the reducedHilbert
spaceis smaller when the T2 metric is not translation invariant. Once more
this symmetry (although anomalous)is the guiding principle to quantize in
agreementwith holomorphicquantization.Actually, the sameresult is obtained
for any other flat metric of T2 correspondingto a different point t in moduli
space.In this casethevacuumstatesarealsogiven in termsof the corresponding
thetafunctions [19],

~(z) = e 2/21mr~ [i/iki] (jki~ kit)

= ek~~212Im r ~ euu12+2Th1~~’z

1EZ+j/Ik~

j=0,l,2,...,Iki—l,

and

dim7-I~= diml4 = ki.

Absolute independenceof the T2 metric would require a non-standardrenor-
malization of the regularizedhamiltonianmodifying its operatorstructure.

Let us analyze, for completeness,the holomorphic quantization approach
[18]. A classicalconstraintanalysisof singularsystemsdescribedby lagrangians
of the form (2.1) showsthat the coitditions

p, = eA,, / = 1,2, (2.25)

aresecondclassconstraints,

{pj —eA,,p
1—eAJ}pB = eBe,~~ 0, i = 1,2. (2.26)

If we perform a non-canonicaltransformationof the phasespaceT* (T
2),

x” = x’, p~=p
1—eA1, i = 1,2, (2.27)

the symplecticstructureof T* (T
2) becomes

in’ = ~ dpAdx’ + eBdx’ Adx2. (2.28)
/=1,2

The constraintsin the new coordinates(x’,p
1) read

p~= 0, i = 1,2. (2.29)

The classicalmethod of dealingwith secondclassconstraintsproceedsby re-
striction to the constraintssubmanifoldp = 0, i = 1, 2. In this caseit canbe
identified with the configuration spaceT

2 endowedwith the symplecticstruc-
ture definedby the magneticfield F = 2mkdx’ A dx2, which is the restriction
of the symplecticform in’ to the constraintsmanifold T2. Therearenot further
constraints.
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Holomorphicquantizationof the reducedphasespaceT2 gives riseto a finite
dimensionalHilbert space

74 = {~:T2 —~ E;~is analytic},

whosequantumstates~ are the holomorphicsectionsof a line bundleE(T2,C)

with Chern class number c, (E) = k.
Thedimensionof the spaceof quantumstatesis given by the Riemann—Roch

formula

diml4 = ~_fs/~R + ~fF = k, (2.30)

andthe quantumhamiltonianis trivial, H = 0, ascorrespondsto a topological
theory.The sameRiemann—Rochformulagivesaccountof theright degeneracy
(k + 1) of the vacuum statesin the monopolecaseof section2.2. There is a
similar formula for magneticholomorphicfields on higher genus(g) Riemann
surfaces#2[20],

diml4 = ~fv~R + ~i—fF + dim74g
2fk~ (2.31)

In the topological limit of the quantum systemassociatedto the Hall effect
we haveobtainedthe sameresultsin a different way. Oneinterestingaspectof

the geometricalmethod basedon the topological limit is that it showsthe way
physicalconstraintsarisein the topological phase.Before taking the topological
limit the momentumoperatorsaregivenby

iH=3—~mkz, iTI=—~J—~mkz, (2.32)

or
iH’ = 3 — mk±, i]7’ = —Ti, (2.33)

oncethesimilarity transformation(2.21) hasbeencarriedout. In the subspace

of groundstatesthe first constraintH’ = 0 is satisfiedin the strongoperatonial

sense.However,the secondconstraintH’ = 0 is only satisfiedin a weaksenseas
the Lorentz condition in QED in the Gupta—Bleulerformalism: its expectation
value vanishes,

(~,,H~2)= f ~~e~1(~)(3 — mk±)~2(z)= 0, (2.34)

on ground states.Thereforein the topological limit, sinceR —+ 7-t~,bothcon-
straintsaresatisfiedin the strongoperatonialsense.Noticethat the secondcon-
straint H’ = 0 also arisesin holomorphicquantizationfrom the commutation

#2 The last term in (2.31) vanishesfor 2g — 2 kI < 0 (Kodaira’s vanishingtheorem)but not

in general,as erroneouslyindicatedin ref. [21].
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relations(2.20) implied by the non-trivial symplecticstructureF of T2. How-
ever, in the geometricalapproachdifferent topological limits impose further
constraintsderivedfrom a different operatororderingprescriptionor a differ-
entchoiceof (targetspace)niemannianmetric.

2.4. QUANTUM HALL EFFECTON THE INFINITE PLANE

We now considerthe samesystemwith the chargedparticle moving on the
planeH2 underthe effect of a constantmagneticfield. The quantizationof the
systemproceedsin a similar mannerto the previouscase,but without the re-
quirementof quantizationof the magneticflux acrossthe plane.The spectrum
of the hamiltonian (2.22) is given by the classicalLandaulevels

E~= ~~(n + 1/2), fl = 0,1,2,..., (2.35)
in

which now are infinitely degeneratedueto theabsenceof boundaryconditions.
Theeigenfunctionscanbeexpressedin this casein termsof generalizedLaguerre
polynomials [22],

= z~L~(2mkizl2). (2.36)

Theabovespectrumcanbeobtainedfrom thatof thetorusin theinfinite volume
limit whenthemagneticfield B —~ x~in sucha way that the densityof magnetic
flux is heldconstant.In thesameway, it canalsobe obtainedfromthe monopole
casewhenthe radiusof the spherea and the charge of the magneticmonopole
k go to infinity keeping the ratio k/a2 constant (see,e.g., ref. [17]). In both
casesthe limit is well definedand the eigensectionsof the sequencesof line
bundles E(T2,C) and E(S2,C) tend to squareintegrablefunctionsof L2 (H2).
The degeneracyof all energylevelsgrowswith the Chernnumberk of E towards

the infinite Landaudegeneracy.This phenomenondoes not occur in Chern—
Simonstheory,as will be shown in the next section,where the infinite volume
limit of the theoryon a torusreducesthe subspaceof groundstatesto the single
uniquegroundstateoverH2. In thatcasethedegeneracydisappearsin theinfinite
volume limit. The analogousphenomenonhere arisesin the limit of infinite
volume for the toruswhenthe magneticchargeis kept constant.

The topological phase(in —* 0) correspondsto the systemdescribedby the
low lying Landaulevels,

= {~: H2 —* C; TJ~= 0, i.e.,~ isanalytic}.

The main peculiarityof this phaseis that it hasan infinite dimensionalHilbert
space,which doesnot describelocal interactions.The spaceof quantumstates
hasa natural (ground) ring structureanddescribesan infinite dimensionalrep-
resentationof the Heisenberggroup which emergesas the quantum symmetry
associatedwith the classicaltranslationinvariance.Finally, it is easyto seethat
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the structureof the topologicalphasechangeswhenwe considera different ne-

mannianmetric in H2. Generically, the Heisenberggroup does not leave the
space of quantum states invariant.

3. Topological phasesof (2 + 1)-dimensionalgauge theories.
Chern—Simons theory

In 2 + 1 space—timedimensionsgaugetheorieshavea very interestinginfrared
structure.Thepresenceof a Chern—Simonsgluonic interaction,which canarise
asan effective interactioninducedby masslessfermions, implies the existence
of gaugeinvariantphaseswith massivegluons [23,25]. In such a case, although
the gaugeinteraction is short-ranged,the quantumvacuumexhibitsa very rich

topologicallydependentstructurewhich revealstheexistenceofnon-trivial topo-
logical phases[24].

In this sectionweshall review someaspectsof the vacuumstructureof topo-

logically massiveYang—Mills theory (degeneracy,vacuum nodes, anomalous
angularmomentum)and its topologicalphase(Chern—Simonstheory).The ap-
proachwill be analogousto the one usedin section2 for topological quantum
mechanics,but with someinterestingphysically meaningfuldifferences.Since

pureChern—Simonstheory is exactlysolvablefor compactLie groups [10]. its
interpretationas a topological limit of a massiveYang—Mills theory provides
very interestinginformation about the structureof the vacuumof the massive
theory.On the otherhandthe massivetheorycanbe consideredas a regulaniza-
tion of the pure Chern—Simonstheory [11,25—27], which might be useful for
the analysis of singular observables and possible ambiguities of the theory.

The massiveYang—Mills action

ikf 2 k . 2
S

4(A) = / tr(A AdA + ~A A A A A) + —Hr (A)iI , (3.1)
4m .1 8mA

M3

is not univocally defined for gaugefields A of any principal bundle P(M,

SU(N)). The value of the Chern—Simonsterm dependson the section of P
chosenin the expression(3.1) and is not invariant under large gaugetrans-
formations of that section.The variation of S4(A) is 2mk timesthe winding
numberof the gaugetransformation.Therefore,a consistentdefinition of the

euclideanfunctional integral is only possiblefor integervaluesof the Chern—
Simons chargek. Weusethe compactnotationof ref. [28], where ii 1 denotes
the norm associatedto the scalarproductsof p-forms,

= _2JtrtA*F/~ (3.2)
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and * is the Hodge operatorassociatedto the (oriented) space—timemetric
(M3, g).

3.1. CANONICAL QUANTIZATION

In thecaseof space—timesof theform M3 = I H with adirectproductmetric
it is possibleto developa canonicalapproach.If we considerthetemporalgauge
(A0 = 0), theonly degreesof freedomare the spatialcomponentsA of thegauge

fields A = (A, A0) with their momentaconstrainedin the phasespaceT* (As)
by the Gausslaw

d~(H+ ~K
2 *A) = K2 * F(A). (3.3)

HereA
1 denotesthe configurationspaceof two dimensionalgaugefields A on

the RiemannsurfaceI with SU(N) asstructuregroup, K 1S the Chern—Simons
coupling constantK = 5/4~7kandd~= — * d4* is the adjoint of the covaniant
derivativedA operatorwith respectto the scalarproductdefinedon A1 by (3.2).

The classicalhamiltonianis given by

2

H = ~K
2A H + * A + ~ IF(A)112. (3.4)

2K 2KA

In the Schrödingerrepresentationcanonicalquantization gives the following
prescriptionfor the momentumoperator:

P = —id/dA. (3.5)

The quantumhamiltonianH is thenobtainedby introducingsuchaprescription
for thequantummomentumP into the expression(3.4) oftheclassicalhamilto-
nian. Thereisno orderingproblemin the kinetic termbecauseall orderingsgive
rise to thesamequantumoperatorH. Thequantumstatesare given the complex
functionalstu(A) on A

1 (from here on denoted A, for simplicity), whichsatisfy
the quantumGausslaw condition

—1dA~-~w(A)= ~—~~dA~i(A). (3.6)
This condition hasa simplegeometricinterpretationin termsof the hermitian
U (1) connectiondefinedby

= ~*A + ~d4G4~F(A), (3.7)

2K K

with GA = (d~d4Y~.Actually, the quantumGausslaw condition (3.6) canbe
written as

d.~V~yi(A)= 0 (3.8)

with

= ö/dA + ~
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which meansthat the quantumstatesarecovaniantlyconstantalongthe gauge

fibers with respectto the connection i,r. The existenceof non-trivial solutions
of the quantumGausscondition (3.8) is possibleiff the connectionE~is trivial
alongthe orbitsofthegroupof gaugetransformationsg. The curvaturetwo-form

of/iK,

= —~(~,*~) + ~(GA* [r~,,7],*F(A)), (3.9)

vanishesfor vectors?, ~ e T4(A) tangentto the gaugefibers ~ = dA~
5.However,

/~is trivial only if theholonomygroupassociatedto anyclosedcurve contained
in agaugeorbit is trivial. Thisis only possibleif theprojectionQK ofthecurvature

two-form QK to the spaceof gaugeorbitsM = A/c,

QK(z,~) 2K(r,~), (3.10)

belongs(modulo a factor 2m) to an integercohomologyclassof .A4, i.e.,

(2my~[Q] e H2(M,l). (3.11)

~h denotesthe horizontal componentof any tangentvector ~ ~ TA(A) with

projection r e T[A](M) which is orthogonalto the gaugefiber at A, i.e., ~h =

PAt, PA = (I — dAGAd~)being thecorrespondingorthogonalprojector.
Condition (3.11) is satisfied if andonly if the Chern—Simonschargek is an

integer. In this way the quantizationconditionof k alsoarisesin the canonical
formalism.Although the abovederivationof this consistencycondition is very
different from that given in the covariantfunctional integral formalism, both
haveacommonorigin: gaugeinvarianceunderlargegaugetransformations[29].
Becauseof the triviality of T~K when k is an integer, the action of the group of
gaugetransformationsc can be globally lifted to an action on the line bundle

Ax C(A,C). The Gausslaw implies the invarianceof the quantumstatesunder
this action and then the quantumstatescan be completelycharacterizedby
sectionsof the line bundleEk (M,c) definedby the gaugeorbitsek = A x

of suchan action. In the sameway, the connection~ of A x C projectsdown

to a connection 5K in Sk andthe quantumhamiltonian canbe expressedas an
operator

H = ~K2AiiV~iI2 + ~ IF(A)H2 + (GA * F(A),*F(A)) (3.12)

2KA 2K

acting on the sectionsof Ek. The Chern classof the line bundle Ek(.M,C) is
non-trivial, c, (Ek) = k. Thereforethe quantumdynamicsof the topologically
massiveYang—Mills theory is very similar to that of the magneticmonopoleon
S2 andthe quantumHall effect on a torus. Therearehoweversomedifferences
due the presenceof additional interactingterms,andthe infinite dimensional
characterof theYang—Mills configurationspaceM, which generatessomeultra-
violet divergencesandrequirerenormalization.The similarity with thequantum
mechanicalmodelssuggeststhe existenceof low energyphysicaleffectsrelated
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to the topologicalstructureof the orbit space.We summarizein the nextsection
the main relevanttopologicalpropertiesof the orbit spaceM of gaugefields on
Riemann surfaces [30].

3.2. TOPOLOGY OF THE ORBIT SPACE

The spaceof thegaugeorbitsd\4~of connectionsdefinedon principal bundles
over a Riemannsurface1 with structuregroup G is not connectedin general.
Eachconnectedcomponentcontainsthe orbits of gaugefields definedon the
sameprincipal bundle P(I,G). The set of connectedcomponentsof M~is
thereforeequal to the set of equivalentclassesof principal bundles [301,

m0(M~)= ff’(I,~). (3.13)

This simplest way of describing ii’ (I,~) is by meansof homotopyclasses
[I, BG] of maps from the RiemannsurfaceI into the classifying spaceBG
of G,

m0(M~)= [I,BG].

SinceBG is thebasemanifoldof the universalbundleEG(BG,G) [31] and EG

is contractible,the following exact sequenceof homotopygroups,

~ (3.14)

establishes an isomorphism m0(BG) m~,(G) between the homotopy groups
of BG and G. This yields the following results:

[I,BU(l)] = 1, [I,BSU(N)] = 0.

In the caseof abeliangaugefields the U (1) principal bundlesare classifiedby
thefirst Chernclassc1 (P). Higherhomotopygroupsof everycomponentof M~

canbe calculatedin a similar way. The resultsare

= 12g

= 0,

m2(M~
1~)= 0,

Sti(N)m
2(M1 ) = 1.

The cohomologyclassesof M~can becalculatedin a similar mannerby using
Thom’s theorem [30,33],

H’(.~’~,l) = 12g

H’(M~~,l) = 0,

H
2(M~’~,l) =

1g(2g—l)

H2(M~ti~,l) = 1.
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In the abelian U( 1) case the orbit space can be identified with [30]

= 1 x S1x ~. xS1 x P(H), (3.15)

where P (7-1) = 7-1/U(1) denotesthe projective spaceof rays of a separable
Hilbert space7-1. The 1 factor describesthe different connectedcomponents

of M~”~characterizedby the integerChern number (magneticcharge)of the
corresponding line bundles. The S’ factors representthe moduli spaceof flat
connections on I and P(7-1) containsall transverse(non-flat) photonfluctua-
tions.The first 1 factor is responsiblefor the zerohomotopygroup

the secondT2~factor for the first homotopygroup m
1(M~/w)= 12g andthe

lastprojective spaceP(7-1) for the secondhomotopygroupm2(M~U)= 1.
The abovecompletecharacterizationof the abelianorbit spacecannotbe

generalizedto the non-abeliancase.In this case,the generatorof the second
cohomologygroup /12(M~~,l) is the two-form [32,33]

= —~(~,*~) + ~(GA* [~,~],*F(A)), (3.16)

andthequantizationconditionof theChern—Simonscharge(3.1 1) canbe easily
understood from the identity

QK = 2mkQ. (3.17)

The topological structure of 1~U(N) is very similar to that of the configura-
tion spaceof the quantummechanicalexamplesconsideredin section 2. In
the genuszero caselo = S

2 the Yang—Mills theory is reminiscentof the mag-
netic monopolecase.In that casewe haveshown the existenceof an anomalous
contributionto the angularmomentumwhich transmutatesthe spin andstatis-
tics (josonic/fermionic) of chargedquantumparticlesmovingaroundmagnetic
monopoleswith odd magneticcharge.However, in the gaugetheorycaseit has
been shown that such a phenomenondoesnot occur [34]. Although the sec-
ond homotopygroupof M~J””~is non-trivial (1), the orbits of the SO(3) are
contractible and do not enclose any magnetic charge. Therefore the only effect
of the topological mass is to give an angular momentum k/~kito the massive
gluon, which doesnotchangeits bosonicstatistics [23].

3.3. VACUUM STRUCTURE

Anotherphysical consequenceof the non-trivial topology of the orbit space
is the existenceof nodesin all quantumstatesincluding the vacuum.The phe-
nomenonarisesbecauseof the non-trivial characterof the line bundleSk (M,C)
wherephysical statesaredefined [34]. In pure 2 + 1 dimensionalYang—Mills
theory Feynmanarguedthat the absenceof nodes in the vacuumfunctional
might imply confinement[35]. Healso arguedthat ageneralizationof the mm—
max principle would imply that the vacuumfunctional tiio(A) doesnot vanish
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for any classicalgaugefield configuration.In the presenceof the Chern—Simons

term themm—maxprinciplecannotbe appliedbecauseof thecomplexcharacter
ofthe interactionaswaspointedout in section2 for finite dimensionalquantum
models. Moreover, in that casethe deconfinementmechanismis basedon the
massivecharacterof gluons,which is also due to the presenceof the complex
Chern—Simons term.

In a genuszero RiemannsurfaceI = ~2 the locusof nodesof the vacuum
functional can be obtainedfrom the analysisof the gaugeanomaly of chiral
fermionic determinants.The effectivegaugeactionof a chiral fermion W(A) =

log det(fl~A)theorysatisfiesthe gaugeanomalycondition

d~/~W(A)= ~-*dA, (3.18)

which is identical to theGausslaw (3.6) constraintof physicalstatesfork =

[32]. Therefore,any physicalstateof topologicallymassiveYang—Mills theory
can be written as

= e’~~(A), (3.19)

~(A) beingan arbitrarygaugeinvariantnormalizablefunctional.Thus,thelocus
of nodesof quantumvacuumstatesbelongsto the set of the gaugefield con-
figurationsA with vanishingfermionicdeterminant.Whenthe spatialRiemann
surfaceis a S2 spheretheseconfigurationscorrespondto gaugefields A whose
associatedcomplexstructuresarenon-trivial, i.e., the hermitianconnectionA~
definedby A~= ~(A, — iA

2) is not a puregaugeUtOU [36]. In such a case
the set of gaugefields definedfrom global hermitianconnections,A~= U~3U,
is densein the spaceof gaugefields A; thus, the existenceof nodes at such
configurationsis only possiblefor the null state çti (A) = 0.

Thecanonicaltheory is exactlysolvablein the caseof abeliangaugefields. The
hamiltonianof Chern—Simons—Maxwelltheory is quadraticin the gaugefields,

H = —~K
2A ± + *A 2 + ~ IdAH2, (3.20)

ÔA 2K 2KA

and is very similar to the hamiltonianof the quantum Hall effect. The only
differencescomefrom the infinite dimensionalcharacterof the configuration
space,the interactionterms idAIi2 andtheexistenceof theGausslaw constraint.
However, sinceH commuteswith the Gausslaw operator

6 = ~ - * dA

stationaryphysicalstates(H~= Eçt’, Gi,ii = 0) can beconstructedfrom linear
combinationsof eigenfunctionalsof H with the sameenergy.

In the caseof genuszeroor the infinite planeH2 the orbit spaceis of theform
M = 1 x P(7-1), and if we restrict ourselvesto the sectorwithout magnetic
charge, A = M x c (there is no Gnibov problem). Consequently,any gauge
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field A canbe univocally split into its longitudinal andtransversecomponents,

A = A’ + dq~. (3.21)

Sincein S2 andH2 thereareno harmonicone-forms,the transversecomponent

of A is univocally definedby A’ = (I — d4_id*)A. Using the factorization
(3.19) we canexpressthephysical statesin termsof gaugeinvariantfunctionals

yi(A) = e’~~(A), (3.22)

with

W(A) = __L(*dA,J_1d*A).
8m

Usingthe splitting (3.21) andthefactonization(3.22) thehamiltonianbecomes
[11]

H’ = —~K2A + 2K2A (*dA’, (I + A2/4) * dA’) (3.23)

whenactingon gaugeinvariant states~. The groundstateis univocally given by
[11]

~
0(A) =exp(_ 1 (*dA,A~(A+A2)i/2*dA)). (3.24)

2K
2A

The apparentinfinite dimensionaldegeneracyassociatedto Landaulevels is
not presentin this casebecausethe Gausslaw selectsonly one vacuumstate
(3.24). The ground statec~has infinite energyE

0 = tr(A + A
2)’!2 as usual

in quantumfield theory. Oncethis vacuumenergy is renormalizedto zero, the

topologicallimit (A —+ ~c) leadsto aonedimensionalHilbert space = C with
null hamiltonianH = 0. The resultagreeswith the oneobtainedvia canonical
quantizationof pureabelianChern—Simonstheory [10].

Higher energystatesare given by the infinite dimensionalgeneralizationof
Laguerrepolynomials and correspondto the free propagationof an arbitrary
number of spin one massive particles.

In the caseof Riemannsurfaceswith highergenusit is necessaryto introduce
somechangesin the abovepicture. The canonicalquantizationof pure Chern—
Simons theory leadsto a non-trivial quantumHilbert space

= ~ (3.25)

The sameresult is obtainedfrom the topological limit of the Chern—Simons—
Maxwell theory.The degeneracyarisesin thiscasebecausenot all the degenerate
Landaustatesareeliminatedby Gausslaw condition. In this casethetransverse
modesof the splitting (3.21) containsomeharmonicformsa whichgeneratethe
T2~factorof theorbit space ~ Thereforewe havea morecomplexsplitting
of gaugefields degreesof freedom,

A = A” + a + dr/. (3.26)
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The harmonicforms a must satisfy someperiodicconditionsto eliminatethe

overcounting of Gribov copies. The hamiltonianpicks up an additional term
governingthe dynamicsof thesevariableswhich is similar to thequantumHall

effect on T2~’with topologicalchargek. Consistencyrequiresin this casethat
the Chern—Simonschargek be aninteger ~. Therefore,groundstatesaregiven
by the productof the functional (3.24) andthe appropriatethetafunctionson
~ The vacuumdegeneracyis k~in agreementwith the pureChern—Simons
approach.

In the Chern—Simons—Maxwelltheorythe groundstatesdo not dependon the
holomorphiccomponentA

2 = ~ (A, — iA2) of A. In fact, if we carry out the

similarity transformationassociatedto holomorphicquantization,

~(A) = eA~~~
2~(A), (3.27)

the hamiltonian becomes

H’ =

+
2K2AHdAII + AK

2 tn (3.28)

in the complexcoordinatesA
2,A~of the configuration space A of gaugefields.

The secondterm of H’ doesnot leave invariant the spaceof holomorphicfunc-

tionals.Forthis reasonthe groundstatesin the massivetheoryare notholomor-
phic. However, in the topological limit this term vanishesandwe recoverthe
holomorphicstructureof pureChern—Simonsquantumstates.

Thequantizationin non-trivial magneticbackgroundsc, (P) = n is also con-

sistentwhen the Chern—Simonschargek is an integer [38]. The degeneracy
of the ground state is metric independentand in the caseof eventopological
chargesk modulartransformationsacttrivially on the subspaceof groundstates
over the T

2 torus
Theinfinite volumecaseH2 is similar to thegenuszero ~2 caseandthe ground

stateis unique,as wehaveshownabove.However,it canalso beobtainedfrom
that of any Riemannsurfacewhen its volume increasesto infinity. For any
finite volume the associatedtorus T2~of the orbit spacehasa constantvolume
(2m~k~)~which countsthe degeneracyof the quantumvacuumstates.However
this torus shrinksto a singlepoint in the infinite volume caseand in that case
the quantumvacuumstatebecomesunique.The otherquantumstatestend to

#3 The Gausslaw only imposes invarianceunderinfinitesimal gauge transformations.If we do

not impose invarianceunder largegaugetransformationsit is possibleto obtain a consistent
quantizationfor any value of k. This is equivalentto consideringall the Gribov copiesof
the fields a as inequivalentfield configurations. In such a casethe relevant orbit spaceis
Hi (Xg,R) x P(7-t) and the space7l~becomesinfinite dimensional.When k is a rational
numberk ~ 0 the symmetrygroup containssomelargegaugetransformationsand theHilbert
spaceremainsfinite dimensionalbut with higher degeneracythan kf [37].
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the samestateandthe degeneracy disappears in that limit. In the case g = 1 this
limit correspondsto thequantumHall effectwhenthesizeof thetorusshrinksto

a single point keepingthe magneticflux constant.Thegeometricinterpretation
is that in the presentcasethe Gnibov horizonbecomescloserandcloserto the
origin alongthe harmonicforms directions,becausethegaugetransformations

ç5(x) = e~ (3.29)shift the gaugevariable by a constantharmonicform,
A~= A + a, (3.30)

andthe periodicboundaryconditionsrequirea to be on the dual torus. In the
infinite volume limit that torus T2 becomesa single point becauseany gauge
transformationof the type (3.29) belongsto c~2for anyvalueof a.The only ap-

parentreminiscenceof thedegeneracyis theexistenceof longrangecorrelations
in the two point functions of massive photons [26]. But such correlations are
rather associated to some (infinitly massive) null states. In some sensethis phe-

nomenonis oppositeto the Goldstonemechanism;thereareno local physical
excitationsassociatedto the long rangecorrelationfunctions.

In the non-abeliancasethe pureChern—Simonstheoryis also exactlysolvable

for compactLie groupsG.The Hilbert spaceof quantumstatesfor G = SU(N)
is 140]

7-1S2 = C, 7-1T2 =C~’~,

where n(N,k) = (Th’) is the numberof weightsin a fundamentalk-alcove

A1I7kArMW of SU(N). In the infinite volume limit the quantumHubertspace
also becomesonedimensionalas in the abeliancase.

In topologicallymassiveYang—Mills theorythe spectrumof the hamiltonian
is notexactlyknown,butwecanget someinformation from thepuretopological
phase.~n the infinite volume limit the vacuumstateis uniquebecausethe cor-
respondingtopological limit hasno degeneracy.The samepropertyholdswhen
the spatialmanifold is a two dimensionalsphere.However,in the caseof a two
dimensionaltorusthe degeneracyof the vacuumis unknown.It is certainlylower
than n (N,k) becauseof the potential term

2K2AH~H~

which in this casebreaksthe degeneracyof Chern—Simonsstates.Sincethis term
becomesirrelevantin the topological limit, we recovertheChern—Simonsdegen-
eracywhenA —~ DC. This illustrateshow the existenceof a solvabletopological
phasecan shedsomelight in the vacuumstructureof a full fledged quantum
field theory.

It is also interesting to analyze how the dynamic constraints of the Chern—
Simons theory appearin the topologicalphaseof a massivegaugetheory. The
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only constraintin the massivetheory is the Gausslaw (3.6). However, in the
topological limit the ground states tend to holomorphic functionals ~(A2) and

the operators A~and —2K
2 ~/~AZ can be identified in a weak sense. Their

expectationvalueson holomorphicstatesare equal. In this waythe secondclass
momentum constraints arise in the topological limit in a similar mannerto
the quantummechanicalmodelsof section2. However,in this casewe havean
additionalconstraint6~(A

2) = 0, which with theaboveidentificationsbecomes

(~(A2),6 ~2(A2)) (çr~(A2), *F(A2) ~2(A2) ) = 0 (3.31)

in a weak sense.Thereforeordinarygaugeinvariancein the topologicalphasebe-
comesholomorphicgaugeinvariance,which is thehighersymmetry thatmakes

Chern—Simons theory solvable.

4. Covariant functional integral approach

In previoussectionsour analysisof topological quantumtheorieswasbased
on a canonicaloperatorformalism. Most of the resultscan also be derivedby
path integral methods.In particular, it is very interestingto seehow the main
propertiesof the topologicalquantummechanicalsystemsanalyzedin section
2 can be obtained by means of the path integral approach, which, on the other
hand,illustratesthelow energyfeaturesdescribedin theintroduction.However,
the descriptionof the path integral quantizationwould enlargeexcessivelythe
contentof this noteandwill be given elsewhere.

In the caseof Chern—Simonstheory the covariant functional integralmethod
exhibits some new featureswhich merit a separatediscussion.Although the
theory is finite andsolvablein the canonicalformalism for compactLie groups
in theabsenceof space—timeboundariesandexternalsources,in the covaniant
formalism it is simply renormalizable.

Theexistenceof singularitiesis dueto thepresenceof someunphysicaldegrees
of freedomin this formalism.Therefore,theanalysisbecomesnon-trivial andto
someextentthe fluctuationsof thoseunphysicaldegreesof freedommight veil
the topologicalnatureof the theory.

On the other hand, Witten conjecturedthat some quantum observablesof
Chern—Simonstheory provide field theoreticaldefinitions of topological in-
variantsof knots, links andthree-manifolds[39]. This beautiful ideahasbeen
pushedforward by different methodsin the canonicalformalism [40,21]. How-
ever, the analysisof the conjecturesfor a generalthreedimensionalmanifold
requiresthe use of a covariant formalism. Moreover,the analysisof possible
gravitational or framing anomaliesis not completein the canonicalformalism
becauseof the specialform of the spacemetricin sucha formalism:directprod-
uct of a two dimensionalriemannianmetricandan onedimensionaltimescale.
Forinstance,theinducedgravitationalChern—Simonsterm is not metricdepen-
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dent for suchmetrics,andvanishesfor somechoicesof framing. Although the
analysisof thoseanomaliescanbeachievedin anindirect way by usingtopolog-
ical techniqueslike topological surgery,insteadof field theoreticaltechniques,

a completediscussion~intermsof purefield theoreticalargumentsrequiresthe
useof a threedimensionalcovariantapproach.

The first problem in the covaniant formalism is the existenceof ultraviolet
divergences.Therefore,it is necessaryto introducesomeregularizationin order
to smooththeultravioletbehaviorof the Chern—Simonsinteraction.Weshall use
a geometricalregulanizationwhich preservesmany of the interestingproperties
of the model: continuity of space—timeandinvarianceunderframing andgauge
transformations.

4.1. GEOMETRIC REGULARIZATION

The essential characteristics of geometric regulanization are based on the ob-
servationthat,becauseof gaugeinvariance,the relevantspaceof covaniantfield
configurationsis alsothe spaceof covaniantgaugeorbits!vI. SinceM is a curved
infinite dimensionalriemannianmanifold the regularizationof a functional in-
tegraldefinedoverM doesnot simply require a regulanizationof the action,as

in ordinary field theorieswith flat configurationspaces,but also a non-trivial
regulanizationof the functional (niemannian)volume element.In this way it is
possible to obtain a regulanizationwhichpreservesthe topologicalpropertiesof
continuum approaches and has a non-perturbative interpretation.

Because of the pseudoscalar character of the Chern—Simons action, standard
perturbativeregulanizationmethodscannotbe applied.This fact has recently
stimulatedtheinterestin theapplicationof differentperturbativeregulanization
prescriptionsto Chern—Simonstheories [27,41—43].

The geometricregulanizationmethod proceedsby threesteps[42,44].
(1) Regu/arizationof theclassicalactionby meansof a Yang—Mills term with

highercovariantderivatives:

S4(A)=~ftr(AAdA+~AAzIAA)

M3

+ (F(A), (I + 4A/A)~F(A)). (4.1)

8mA

(2) Regularization of the volumeofgaugeorbits, det~
2J~= det”2 d~d

4,by
the Pauli—Villarsmethod,

det~/~,A~= det~
2(I+J~/A~2)2~2

x det~2J~(I+ (I + J~/A2)2~)J~/A2). (4.2)

And the crucial step
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(3) Regularizationofthe volumeelementof the covariantgaugeorbit space
M = A/~in terms of a binuclear riemannian structure (g~,,G~,,G~,)of M. It
consistsof a niemannianmetric g~,andtwo families of self-adjointtrace class
operators~ G~,acting on the tangentspacesof ~\4. The nuclear structure is
the basicfunctional structurebehindthe constructionof Gaussianmeasuresin
Hilbert spaces.The generalizationof this structureturns out to be veryrelevant
for the constructionof functionalmeasuresin Hilbert Lie group [45] andarbi-
trary infinite dimensionalHilbert manifolds including gaugeorbit spaces[46].

Geometricregularizationis basedon the applicationof this constructionto the
covaniant formalism [28]. In this case the binuclear riemannian structure can
bedefinedby meansof thethreeriemannianmetricsg~,,i = 0, 1,2, of M given
by

g~(t,~j)= (P4~,(I + JA/A1
2)mp

4i~), i = 0,1,2, (4.3)

for any tangentvectors~,ij of TAA whoseprojectionson M are r and i~,re-
spectively. Then, the operatorsG~,: T1,41M —. T1~11.A4(i = 1,2) defined
by

g~,(z,~)= g~,(r,(G~,~’~1) (4.4)

areself-adjointandtraceclasswith respectto g~,for in1 > in0 + 2, anddefine
a binuclear niemannian structure in the orbit space .“vl.

The geometric regulanization of the functional integral is given by

fgo,Gi,G2, ([A]) det~,J~e_Sn(A)

where dUgOGIG2 ([A]) is the regularizedfunctional volume elementassociated

to the binuclearstructure(g~,,~ G~,,),which, e.g.,in the generalizedLandau
gauge

d~0(A~—Ao)= 0 (4.6)

reads

(At) = ~A~det~
2 g

4
0

4 (At)

x det
2(G~,)~’det2(G~,Y~G~,. (4.7)

In the limit (A,A’) —* (~c,DC) we recoverthe Babelon—Vialletexpression
[47] for the functional integral,

fóA~det~2g(A~)det2A~e~~~, (4.8)

which is equivalent to the standard one obtained by means of the Faddeev—
Popov mechanism, because

det’12g(A~)det’124~= detd~
0d4.

In this limit the binuclear structure disappears, (g~,,G~,,G~,)—~ (g, 1,1), and

M becomesa weakniemannianmanifold with metric g.
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4.2. FINITENESS

Therearesomefurther restrictionson the exponentsof the regulatorswhich
arenecessaryfor consistency.In flat space—timestheregularizedGreenfunctions

are finite if andonly if

n + 1 = in2, n > { 1,mo, in1 — in0, in1 — mn2} . (4.9)

Since thosefinite resultsareobtainedby cancellationof one-loopdivergences

a completeformulation of the regulanizationwith non-perturbativeinterpreta-
tion requiresthe introductionof a non-perturbativeauxiliar (gaugedependent)
cut-off. Therefore,in order to recovergaugeinvarianceafter the removal of
the auxiliar cut-off the exponentsof the regulatorsmust satisfy the following
condition [44]:

(n + 1)2 — mn~— (in, — in0)
2 — (in

2 — ~ )2 = 0, (4.10)

which guaranteesthat Slavnov—Tayloridentities are satisfied in perturbation
theory. When the conditions(4.9), (4.10) aresatisfied the functional integral
is completely regularizedin a global gaugeinvariant way. There is an infinite
family of integersolutionsof the constraintequations(4.9), (4.10) which give
rise to consistentgeometricregularizations.

One loop calculation of the Chern—Simonseffective action with geometric
regulanizationyields [42]

pW (.4) = ~1) (A) + i /tr(~2~4AdA + ~(~3 .4 A A A .1), (4.11)

with
N N

= (2m + ~ (~3= (~m+ 2I~)—~,
2m 2m-

(l+p
2)~

= ~ 1 +p2(l +p2)2~’

and f~’~(A) being a non-localscalarterm associatedto a global anomaly.
The fact that (57 ~ (~3implies the existence of a finite renormalization of the

gaugefield which is not universal [42,44] [AR = Z’12A, with Z = 1 + 2(r3 —

(~2)+ 0(1/k)]. The Chern—Simonschargek is also renormalizedby a finite
universal additive constant kR = k + N. Both renormalizationsof the gauge
field andthe couplingconstantare in agreementwith the oneloop renormaliza-
tion of gaugetransformationsandSlavnov—Tayloridentities [42,44]. Although
we know by generalsymmetryargumentsthat the theory is finite to any order
in perturbationtheory [48], the explicit renonmalizationsobtainedaboveare
characteristicof all regulanizationsinvolving a Yang—Mills term which breaks
the pure pseudoscalarcharacterof the action. In particular, the renormaliza-
tion of the Chern—Simonscoupling constantmakespossiblethe identification
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of Witten’s chargewith the barechargein the definition of topological invari-
ants.Thecalculationof the Wilson1oopexpectationvaluefor anunknottedloop
up to sixth orderin perturbationtheory [50] showsthe agreementof the above
prescriptionwith Witten’s #4~A two loop calculationin the casen = 0
with an auxiliar dimensionalregulanizationrecentlycarriedout also showsthat
thereareno additional correctionsto thevalueof the renormalizedcharge[52],
which presumablyindicatesthat the sameresultholdsto any order of perturba-
tion theoryin geometricregularization.

4.3. METRIC DEPENDENCE

Let us now analyzethe metric dependenceof the quantumChern—Simons
theory in the frameworkof geometricregularization.Although the classicalla-
grangianis metric independent,a metric dependencemight appearin the quan-
tization processfrom thefunctionalmeasuredA~[53] or thegaugefixing condi-
tion becauseboth are metric dependent.Moreover,geometricregularizationis
definedby abinuclearriemannianstructureof the orbit spacewhich is basedon
the space—timemetric andthis dependencecouldremainevenafterthe removal
of the ultraviolet regulators (A,A’ —~ Do).

In order to analyze this dependence we look, as in sections 2 and 3, at the

most sensitive observable under changes of space—time metrics: the partition
functional.

The one 1oop contribution given by

ZW(g) = det~2(I+

x det”2 (40/A2(J + i°/A2)2~+ 1) det~2A°

x det~”2[Ai/A2(J + i’/A2)~ + i*d]

x det~2(I + J0/A/2)2fl+2 (4.12)

in thegeneralizedLandaugaugeis finite andcan beevaluatedin the weak limit
approximation gpv = ~ + ~ The result is of the form [54]

= z(g)exp(cif~+c
2f~R)

xexP(~fTr(inAw+~wAwAin)+o(l/A))~ (4.13)

#4 Thoseresults are obtainedusing the renormalizedcorrelationfunctionsof the Chern—Simons

theory (4.11). A similar calculation in the framework of geometric regularization leadsto
slightly different metric dependentresults [51].
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where ~ (g) contains the non-local terms induced by the global framing
anomaly [39] and non-perturbativecontributionsgeneratedby the existence

of zeromodes[54]. We remarkthatoncethe Greenfunctionsare finite in flat
space—timestheyremainfinite for arbitraryspace—timemetrics.Thereforethere
areno further restrictionson the parametersof geometricregularization.

The only termswhich remainfinite in theultraviolet limit, A, A’ —~ DC, are the
gravitationalChern—Simonstermc3 andZ~’~(g). The othertermswould require

countertermsto canceltheir divergentcontributions,c, = 0(A
3) + 0 (A’3) and

c
2 = 0(A) + 0(A’).
The explicit calculationof the coefficientsof the inducedgravitationalaction

(4.13) yields the following values:

c, = 0, c2 = ~(N
2— l)(csA—m(n + l)A’), c

3 = ~(N
2— 1), (4.14)

for SU(N) in the generalized Landau gauge (4.6), with

f 1 +2n(l +p2(l +p2)2’~’)
= i dp . (4.15)J 1 +p2(l +p2)2~

0

The coefficient c
2 of the Einstein—Hilbert term dependson the parameters

of the regularizationandcanbe cancelledby a suitablechoiceof the regulator

masses,A’ = sA/m(n + I). However, the coefficient of the Chern—Simons
term is universalandcannotbecancelledby any choiceof the parametersof the
regularization.

The valueof c3 = (N
2 — 1 )/24 is in agreementwith the exact valueconjec-

turedby Witten,

k(N2 1) N2 I

c
3 = 24(k ±N) = 24 (1— N/k + O(N

2/k2)). (4.16)

A two 1oop calculation of c
3 has been recently carried out in a different pertur-

bative regulanizationscheme[49]. The result givesthe secondterm of Witten’s
expansion(4.16),but in sucha schemethe first term is missing.

In the geometricregularizationschemethereis no framing anomalybecause
the changeof the gravitational Chern—Simonsterm undernon-trivial framing
transformationsis compensatedby thechangeof the non-localpart of ~ (g).
In fact, geometricregulanizationpreservesframingindependenceexplicitly. But,
consequently,the partition function becomesmetric dependent.The cancella-
tion of this dependencecanonly beachievedby theadditionof a finite gravita-
tional Chern—Simonscountertermwhich inducesa framinganomalousbehavior
of thequantumpartitionfunction. In this sensemetricdependencecanbetraded
by a framinganomaly.

The one1oop contributionsto the partition function z~’~(g) canalso be ex-
actly calculatedbeyondtheweak field expansionfor someparticularspace—time
backgrounds(S~,1x 5!) [54]. The resultsconfirm thevaluesof the coefficients
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(4.16) of thelocal termsof the inducedaction: cosmological,Einstein—Hilbert
andgravitationalChern—Simonsterms,andprovideexplicit expressionsfor the
non-local terms of Z,~(g). In the case of a manifold of the form I x S1 the
metric dependence of those non-local terms cancels out with that of the non-
perturbative contributions of Z~(g), up to a constant factor (vol M

3)’
12 [55],

which is genus independent [54]. This fact stresses the topological character

(metric independent)of Chern—Simons theory in the canonical formalism. Be-
causeof the directproductstructureof the space—timemetricin this formalism

the gravitationalChern—Simonsterm is not metric dependentandtherealways
existsa framing where it vanishes.Once the metric dependentfactoris elimi-
natedthepartition functionof the abeliantheory~ (g) -..~ k~’ givesaccount
of the vacuumdegeneracyk~[54]. In the non-abeliancaseit gives only the
leading approximationto the exact vacuumdegeneracy[54]. It will be very
interestingto know whetherhigher order perturbativecalculationsagreewith
higherordercorrectionsto the exact formula.

Although thereis not any apparentsymmetry argumentbehind the choice
A’ = c~A/m(n + I) of the massesof the regulators,it is a necessarycondition

to cancelan explicit metric dependencewhich arisesfrom the quantumfluctua-
tions.Thepartition functionis not the only observablewhichpicks up quantum
metric dependentcontributions [51]. In general,it is alwayspossibleto factor-
ize the metric dependentcontributionsandobtain a topological invariant, but
this procedurehas to be carriedout very carefullybecausesomerelevanttopo-
logical information canalsobe lost by a cruderenormalization.This necessity

of renormalization introduces some ambiguities in the definition of topological
invariants in Chern—Simons theory.
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sights.I amalsogratefulto theorganizersof theSchool,speciallyto Prof. Roman
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